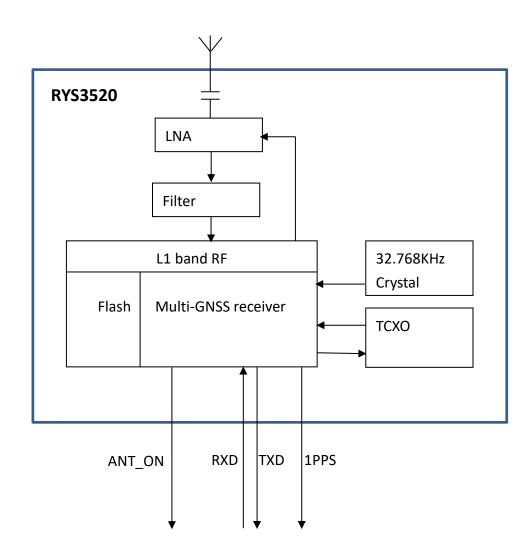


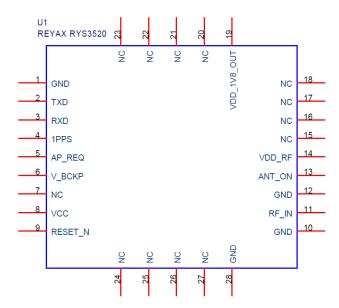
RYS3520

+3.3V UART interface GNSS module

Datasheet

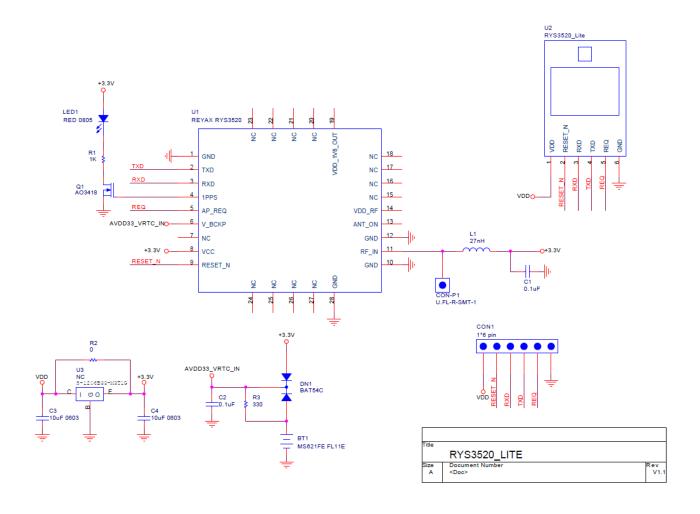

PRODUCT DESCRIPTION

The RYS3520 +3.3V GNSS module is a multi-GNSS module with high sensitivity and performance, It supports GPS, GLONASS, Galileo, BeiDou and QZSS systems. It also supports SBAS, WAAS, EGNOS, MSAS and GAGAN and AGNSS functions.


FEATURES

- Multi-GNSS GPS/GLONASS/Galileo/BeiDou module.
- Protocol NMEA 0183 V4.10.
- Support for multi-GNSS including QZSS and SBAS ranging.
- Integrated 12 multi-tone active interference cancellers.
- Indoor and outdoor path detection and compensation.
- Including enhanced SAW filter, LNA and TCXO.

BLOCK DIAGRAM


PIN DESCRIPTION

Pin	Name	I/O	Condition			
1	GND	-	Ground			
2	TXD	0	Serial interface Output.			
3	RXD	I	Serial interface Input.			
4	1PPS	0	ime pulse output.			
5	AP_REQ	I	Keep it low before sending any command to ensure the command			
			can be sent successfully.			
6	V_BCKP	1	Backup voltage supply.			
7	NC	-	Leave Unconnected.			
8	VCC	1	Power Supply and I/O Voltage.			
9	RESET_N	I	Pull down at least 100ms to reset the module.			
10	GND	-	Ground			
11	RF_IN	I	GNSS signal input.			
12	GND	-	Ground			
13	ANT_ON	0	Power control for external LNA.			
14	VDD_RF	0	Supplies power for external RF components.			
15	NC	-	Leave Unconnected.			
16	NC	-	Leave Unconnected.			
17	NC	-	Leave Unconnected.			

18	NC	-	Leave Unconnected.	
19	VCC_1V8_OUT	0	1.8V power supply output.	
20	NC	-	eave Unconnected.	
21	NC	-	Leave Unconnected.	
22	NC	-	Leave Unconnected.	
23	NC	-	Leave Unconnected.	
24	NC	-	Leave Unconnected.	
25	NC	-	Leave Unconnected.	
26	NC	-	Leave Unconnected.	
27	NC	-	Leave Unconnected.	
28	GND	-	Ground	

APPLICATION SCHEMATIC (UART Interface)

SPECIFICATION

Item	Min.	Typical	Max.	Unit	Condition
Power Supply Voltage	2.5	3.3	3.63	V	VCC
Backup Supply Voltage	1.65	3.3	3.63	V	V_BCKP
Satellite acquisition Current		33		mA	passive antenna
Satellite tracking Current		33		mA	passive antenna
RTC backup Current		12		uA	
Default Baud Rate		115200		bps	8,N,1
Digital input level high	2		VCC+0.3	V	VIH
Digital input level low	-0.3		0.8	٧	VIL
Digital output level high	2.4		VCC	V	VOH
Digital output level low			0.4	V	VOL
				MHz	GPS L1 C/A, QZSS L1 C/A: 1575.42 MHz
					GLONASS L1: 1598.0625–1605.375 MHz
Supported GNSS Bands					BDS B1I: 1561.098 MHz
					B1C*: 1575.42 MHz
					Galileo E1: 1575.42 MHz
Number of Tracking Channels		47			
Number of Concurrent GNSS		5			
Acceleration			4	G	
Accuracy of 1PPS Signal		100		ns	
Navigation update rate		1	10	Hz	
Accuracy		1.5		М	CEP 50%, 24 hours static, more
					than 6 satellites, Signal strength
					is -130dBm
Cold starts without AGNSS		26		Sec.	Signal strength is -130dBm
Warm starts without AGNSS		20		Sec.	Signal strength is -130dBm
Hot starts without AGNSS		1		Sec.	Signal strength is -130dBm
Cold starts with EASY®		12		Sec.	Signal strength is -130dBm
Warm starts with EASY®		2		Sec.	Signal strength is -130dBm
Hot starts with EASY®		1		Sec.	Signal strength is -130dBm
Cold starts with Flash EPO®		5		Sec.	Signal strength is -130dBm
Tracking Sensitivity		-167		dBm	
Hot starts Sensitivity		-160		dBm	
Cold starts Sensitivity		-148		dBm	
Velocity			500	M/s	

Altitude		10000	80000[1]	М	[1]Balloon mode
Acceleration		4		G	
Operating Temperature	-40	25	+85	°C	
Dimensions					10.1mm*9.7mm*2.3mm
Weight		0.5		gram	

REFLOW SOLDERING

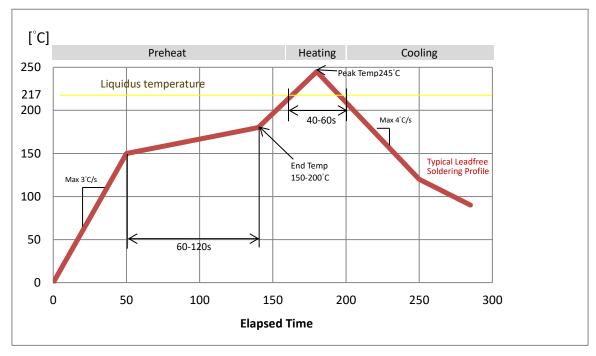
Consider the "IPC-7530 Guidelines for temperature profiling for mass soldering (reflow and wave) processes, published 2001. **Only** single reflow soldering processes are recommended for REYAX modules. Repeated reflow soldering processes and soldering the module upside down are not recommended.

Preheat phase

Initial heating of component leads and balls. Residual humidity will be dried out. Please note that this preheat phase will not replace prior baking procedures.

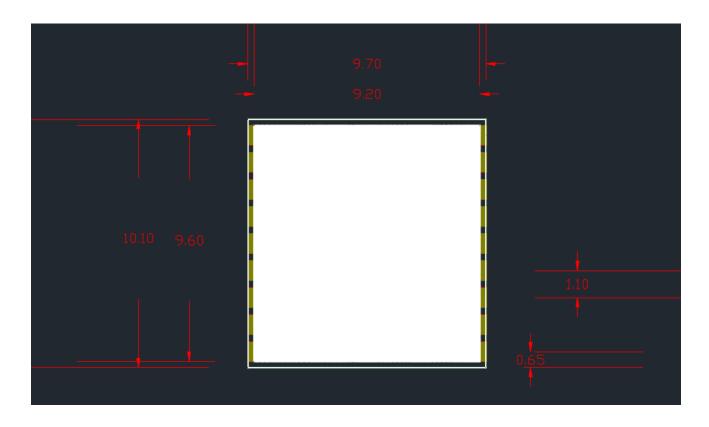
- Temperature rise rate: max. 3 °C/s If the temperature rise is too rapid in the preheat phase it may cause excessive slumping.
- Time: 60 120 s If the preheat is insufficient, rather large solder balls tend to be generated.
 Conversely, if performed excessively, fine balls and large balls will be generated in clusters.
- End Temperature: 150 200 °C If the temperature is too low, non-melting tends to be caused in areas containing large heat capacity.

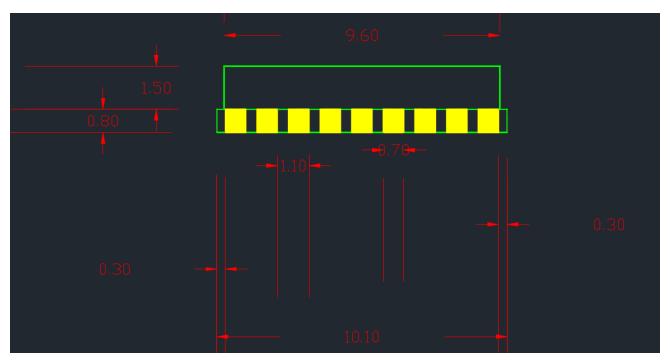
Heating/Reflow phase

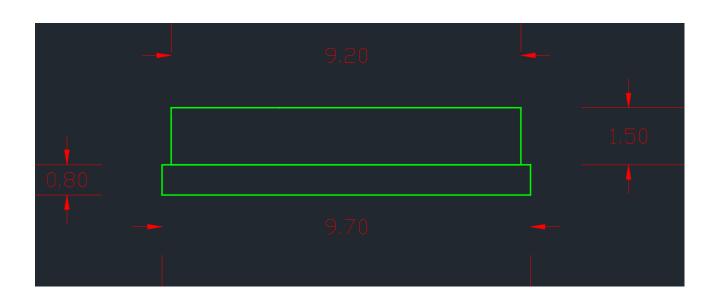

The temperature rises above the liquidus temperature of 217°C. Avoid a sudden rise in temperature as the slump of the paste could become worse.

- Limit time above 217 °C liquidus temperature: 40 60 s
- Peak reflow temperature: 245 °C

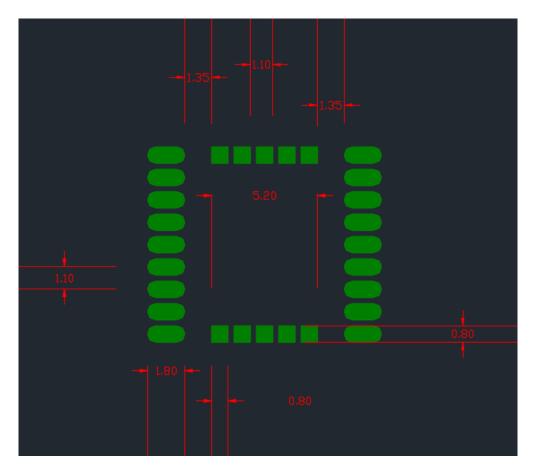
Cooling phase


A controlled cooling avoids negative metallurgical effects (solder becomes more brittle) of the solder and possible mechanical tensions in the products. Controlled cooling helps to achieve bright solder fillets with a good shape and low contact angle.


 Temperature fall rate: max 4 °C/s To avoid falling off, the REYAX module should be placed on the topside of the motherboard during soldering.



Recommended soldering profile


DIMENSIONS

LAYOUT FOOTPRINT RECOMMENDATIONS

Unit: mm

E-mail: sales@reyax.com

Website: https://reyax.com