

RYFA689

868/915MHz Ultra Low Power

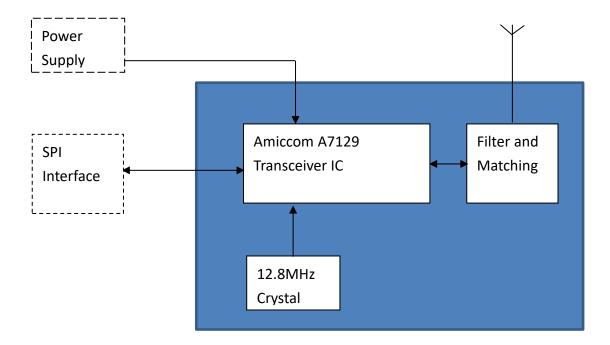
RF Transceiver Module with Internal Antenna

Datasheet

PRODUCT DESCRIPTION

The REYAX RYFA689 is based on Amiccom A7129 chip. It is a monolithic low-IF architecture CMOS FSK/GFSK TRX for wireless applications in the ISM bands. This device is especially suitable for battery-powered application.

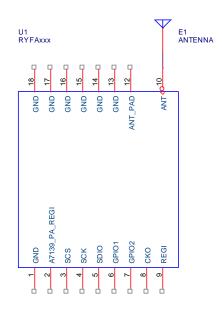
FEATURES


- FSK and GFSK modulation.
- Ultra Low RX Current Consumption: 4.5mA.
- High RX sensitivity, -117dBm at 2Kbps on-air data rate.
- Programmable data rate from 2Kbps to 150Kbps.
- Support 3-wire or 4-wire SPI.
- Designed with internal antenna.
- Metal cover against EMI interference

APPLICATIONS

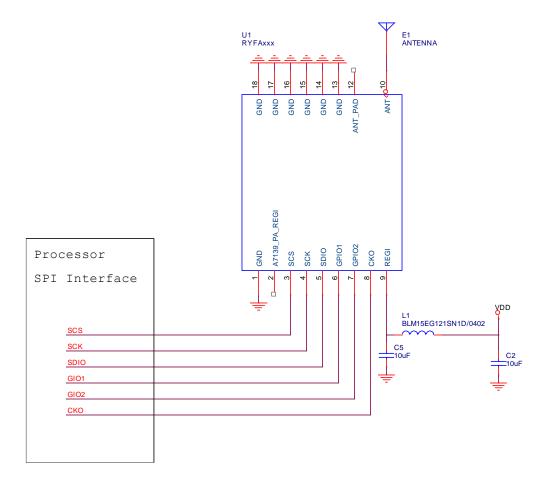
- Wireless Sensor Networking
- Wireless Remote Controller
- Home Security
- AMR (Auto Metering Reading)

BLOCK DIAGRAM


SPECIFICATION

Item	Min.	Typical	Max.	Unit	Condition
Supply Voltage	2.2	3.3	3.6	V	VDD
Current Consumption		0.3		uA	Deep Sleep Mode (no register retention)
Transmit Mode current		36		mA	
Receive Mode current		4.5		mA	
Frequency range	808	868/915	928	MHz	
RF Output power			11	dBm	
RF Power Control Range		51		dB	
RF Frequency Accuracy		10		ppm	
RX Sensitivity		-117		dBm	@BER=0.1% high gain mode 2kbps (IFBW=50KHz)
Data rate	2		150	Kbps	
High Level Input Voltage	0.8VDD		VDD	V	VIH
Low Level Input Voltage	0		0.2VDD	V	VIL
High Level Output Voltage	VDD-0.4		VDD	V	VOH
Low Level Output Voltage	0		0.4	V	VOL
Operating Temperature	-40	25	+85	°C	VDD
Weight		6		g	

^{*}For more detail, please refer to the Amiccom A7129 datasheet.


PIN DESCRIPTION

Pin	Name	I/O	Condition	
1	GND	-	Ground	
2	NC	-	Leave Unconnected.	
3	SCS	1	SPI chip select input.	
4	SCK	1	SPI clock input.	
5	SDIO	I/O	SPI data IO.	
6	GIO1	1/0	Multi-function IO 1 / SPI data output	
7	GIO2	I/O	Multi-function IO 2 / SPI data output	
8	СКО	0	Multi-function clock output.	
9	REGI	1	Regulator input. Connect to VDD supply.	
10	ANT	-	ANTENNA	
12	ANT_PAD	-	External Antenna Version Used	
13	GND	-	Ground	
14	GND	-	Ground	
15	GND	-	Ground	
16	GND	-	Ground	
17	GND	-	Ground	
18	GND	-	Ground	

APPLICATION SCHEMATIC

REFLOW SOLDERING

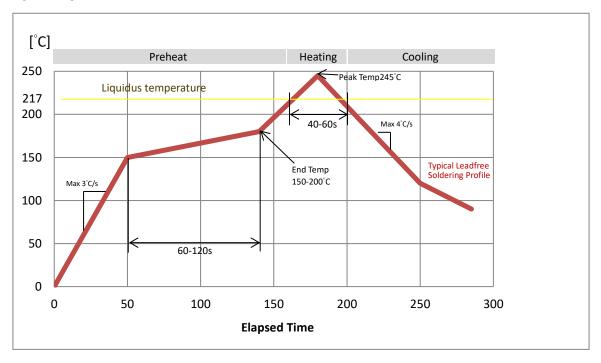
Consider the "IPC-7530 Guidelines for temperature profiling for mass soldering (reflow and wave) processes, published 2001. **Only** single reflow soldering processes are recommended for REYAX modules. Repeated reflow soldering processes and soldering the module upside down are not recommended.

Preheat phase

Initial heating of component leads and balls. Residual humidity will be dried out. Please note that this preheat phase will not replace prior baking procedures.

- Temperature rise rate: max. 3 °C/s If the temperature rise is too rapid in the preheat phase it may cause excessive slumping.
- Time: 60 120 s If the preheat is insufficient, rather large solder balls tend to be generated.
 Conversely, if performed excessively, fine balls and large balls will be generated in clusters.
- End Temperature: 150 200 °C If the temperature is too low, non-melting tends to be caused in areas containing large heat capacity.

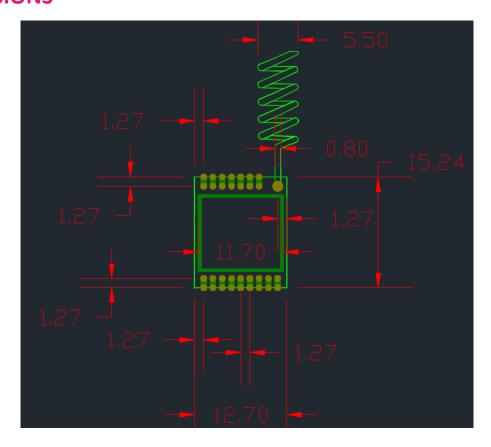
Heating/Reflow phase

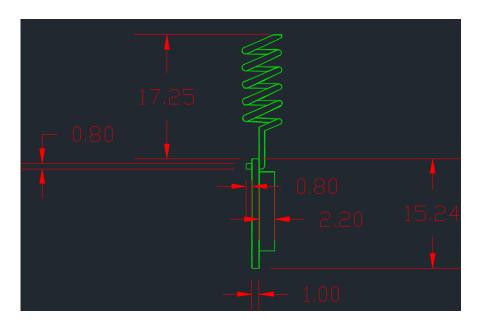

The temperature rises above the liquidus temperature of 217°C. Avoid a sudden rise in temperature as the slump of the paste could become worse.

- Limit time above 217 °C liquidus temperature: 40 60 s
- Peak reflow temperature: 245 °C

Cooling phase

A controlled cooling avoids negative metallurgical effects (solder becomes more brittle) of the solder and possible mechanical tensions in the products. Controlled cooling helps to achieve bright solder fillets with a good shape and low contact angle.


 Temperature fall rate: max 4 °C/s To avoid falling off, the REYAX module should be placed on the topside of the motherboard during soldering.



Recommended soldering profile

DIMENSIONS

Unit: mm

E-mail: sales@reyax.com

Website: http://reyax.com